References
Alter, U., Dang, C., Kunicki, Z. J., & Counsell, A. (2024). The
VSSL scale: A brief instructor tool for
assessing students’ perceived value of software to learning statistics.
Teaching Statistics, 46(3). https://doi.org/10.1111/test.12374
Bakker, M., Veldkamp, C. L. S., Akker, O. R. van den, Assen, M. A. L. M.
van, Crompvoets, E., Ong, H. H., & Wicherts, J. M. (2020).
Recommendations in pre-registrations and internal review board proposals
promote formal power analyses but do not increase sample size. PLoS
ONE, 15(7), e0236079. https://doi.org/10.1371/journal.pone.0236079
Bartlett, J. E., Jenks, R., & Wilson, N. (2022). No
Meaningful Difference in
Attentional Bias Between
Daily and Non-Daily
Smokers. Journal of Trial & Error. https://doi.org/10.36850/e11
Bartlett, J., & Charles, S. (2022). Power to the
People: A Beginner’s
Tutorial to Power Analysis using
jamovi. Meta-Psychology, 6. https://doi.org/10.15626/MP.2021.3078
Bem, D. J. (2011). Feeling the future: Experimental
evidence for anomalous retroactive influences on cognition and affect.
Journal of Personality and Social Psychology, 100(3),
407–425. https://doi.org/10.1037/a0021524
Binfet, J.-T., Green, F. L. L., & Draper, Z. A. (2022). The
Importance of Client–Canine
Contact in Canine-Assisted
Interventions: A Randomized
Controlled Trial. Anthrozoös,
35(1), 1–22. https://doi.org/10.1080/08927936.2021.1944558
Blanca, M. J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R.
(2018). Effect of variance ratio on ANOVA robustness:
Might 1.5 be the limit? Behavior Research Methods,
50(3), 937–962. https://doi.org/10.3758/s13428-017-0918-2
Champely, S. (2020). Pwr: Basic functions for power analysis.
https://CRAN.R-project.org/package=pwr
Dasu, T., & Johnson, T. (2003). Exploratory data mining and data
cleaning. Wiley-Interscience.
Dawtry, R. J., Sutton, R. M., & Sibley, C. G. (2015). Why
Wealthier People Think
People Are Wealthier, and
Why It Matters: From
Social Sampling to Attitudes to
Redistribution. Psychological Science,
26(9), 1389–1400. https://doi.org/10.1177/0956797615586560
Evans, C., Cipolli, W., Draper, Z. A., & Binfet, J.-T. (2023).
Repurposing a Peer-Reviewed
Publication to Engage Students in
Statistics: An Illustration of
Study Design, Data
Collection, and Analysis. Journal of
Statistics and Data Science Education, 0(0), 1–21. https://doi.org/10.1080/26939169.2023.2238018
Hoffman, H. J., & Elmi, A. F. (2021). Do Students
Learn More from Erroneous
Code? Exploring Student
Performance and Satisfaction in an
Error-Free Versus an
Error-full SAS® Programming
Environment. Journal of Statistics and Data Science
Education, 0(0), 1–13. https://doi.org/10.1080/26939169.2021.1967229
Irving, D., Clark, R. W. A., Lewandowsky, S., & Allen, P. J. (2022).
Correcting statistical misinformation about scientific findings in the
media: Causation versus correlation. Journal of
Experimental Psychology. Applied. https://doi.org/10.1037/xap0000408
James, E. L., Bonsall, M. B., Hoppitt, L., Tunbridge, E. M., Geddes, J.
R., Milton, A. L., & Holmes, E. A. (2015). Computer
Game Play Reduces
Intrusive Memories of
Experimental Trauma via
Reconsolidation-Update
Mechanisms: Psychological Science, 26(8),
1201–1215. https://doi.org/10.1177/0956797615583071
Knief, U., & Forstmeier, W. (2021). Violating the normality
assumption may be the lesser of two evils. Behavior Research
Methods, 53(6), 2576–2590. https://doi.org/10.3758/s13428-021-01587-5
Lakens, D. (2022). Sample Size Justification.
Collabra: Psychology, 8(1), 33267. https://doi.org/10.1525/collabra.33267
Lopez, A., Choi, A. K., Dellawar, N. C., Cullen, B. C., Avila Contreras,
S., Rosenfeld, D. L., & Tomiyama, A. J. (2023). Visual cues and food
intake: A preregistered replication of Wansink
et al (2005). Journal of Experimental Psychology: General. https://doi.org/10.1037/xge0001503.supp
Nordmann, E., McAleer, P., Toivo, W., Paterson, H., & DeBruine, L.
M. (2022). Data Visualization Using
R for Researchers Who
Do Not Use R.
Advances in Methods and Practices in Psychological Science,
5(2), 25152459221074654. https://doi.org/10.1177/25152459221074654
Przybylski, A. K., & Weinstein, N. (2017). A
Large-Scale Test of the
Goldilocks Hypothesis:
Quantifying the Relations Between
Digital-Screen Use and the
Mental Well-Being of
Adolescents. Psychological Science,
28(2), 204–215. https://doi.org/10.1177/0956797616678438
R Core Team. (2024). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://www.R-project.org/
Weissgerber, T. L., Winham, S. J., Heinzen, E. P., Milin-Lazovic, J. S.,
Garcia-Valencia, O., Bukumiric, Z., Savic, M. D., Garovic, V. D., &
Milic, N. M. (2019). Reveal, Don’t Conceal.
Circulation, 140(18), 1506–1518. https://doi.org/10.1161/CIRCULATIONAHA.118.037777
Wickham, H. (2014). Tidy Data. Journal of Statistical
Software, 59, 1–23. https://doi.org/10.18637/jss.v059.i10
Wickham, H. (2017). Tidyverse: Easily install and load the
’tidyverse’. https://CRAN.R-project.org/package=tidyverse
Wingen, T., Berkessel, J. B., & Englich, B. (2020). No
Replication, No Trust?
How Low Replicability
Influences Trust in Psychology.
Social Psychological and Personality Science, 11(4),
454–463. https://doi.org/10.1177/1948550619877412
Witt, J. K., Tenhundfeld, N. L., & Tymoski, M. J. (2018). Is there a
chastity belt on perception? Psychological Science,
29(1), 139–146.
Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R., & Schüz, B.
(2018). Data from, “Web-based Positive
Psychology Interventions: A
Reexamination of Effectiveness.”
Journal of Open Psychology Data, 6(1), 1. https://doi.org/10.5334/jopd.35
Zhang, T., Kim, T., Brooks, A. W., Gino, F., & Norton, M. I. (2014).
A “Present” for the Future:
The Unexpected Value of
Rediscovery. Psychological Science,
25(10), 1851–1860. https://doi.org/10.1177/0956797614542274